Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
ChemSusChem ; : e202301801, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38323919

ABSTRACT

The economic advantages of H2 SO4 make it the acid of choice for the hydrometallurgical treatment of waste lithium-ion batteries (LIBs). However, to facilitate the full dissolution of the higher valency metal oxides present in the cathode black mass, a suitable reducing agent is required. Herein, the application of industrial black liquor (BL) obtained from the Kraft pulping for papermaking is investigated as a renewable reducing agent for the enhanced leaching of transition metals from LIB powder with H2 SO4 . The addition of acidified BL to H2 SO4 significantly improved the leaching efficiency for a range of LIB cathode chemistries, with the strongest effect observed for manganese-rich active material. Focusing on NMC111 (LiMnx Coy Niz O2 ) material, a linear correlation between the BL concentration and the leaching yield of Mn was obtained, with the best overall leaching efficiencies being achieved for 2.0 mol L-1 H2 SO4 and 50 vol % of BL at 353 K. A quasi-total degradation of oxygenated and aromatic groups from the BL during NMC111 dissolution was observed after leaching, suggesting that these chemical groups are essential for LIB reduction. Finally, the leached transition metals could be easily recovered by pH adjustment and oxalic acid addition, closing the resource loop and fostering resource efficiency.

2.
Chemosphere ; 314: 137675, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36586444

ABSTRACT

The use of macroalgae, microalgae and cyanobacteria for metal sorption has been widely reported. Still, there are no studies allowing a direct comparison of the performance of these biomasses, especially while evaluating metal competition. The simultaneous sorption of Co2+, Cu2+, Ni2+ and Zn2+ present in a multi-elemental solution by six macroalgae, two microalgae and three cyanobacteria was evaluated. Brown macroalgae were shown to be the most promising biosorbent, with Undaria pinnatifida having a total metal sorption capacity of 0.6 mmol g-1. Overall, macroalgae performed better than microalgae, followed by cyanobacteria. Carboxyl groups were identified as being the main functional groups involved in metal sorption, and all biomass samples were found to be selective to Cu2+. This was linked not only to its higher complexation constant value with relevant functional groups when compared to the remaining metals, but also the Irving-Williams series. The release of K+ and Ca2+ to the aqueous solution during the metal sorption was followed. The obtained results suggest they are readily exchanged with metals in the solution, indicating the occurrence of an ion-exchange mechanism in metal sorption by most biomass. Red macroalgae are an exception to the reported trends, suggesting that their metal sorption mechanism may differ from the other biomass types.


Subject(s)
Cyanobacteria , Metals, Heavy , Water Pollutants, Chemical , Biomass , Metals , Plants , Water Pollutants, Chemical/analysis , Adsorption , Hydrogen-Ion Concentration
3.
Front Microbiol ; 13: 840098, 2022.
Article in English | MEDLINE | ID: mdl-35865930

ABSTRACT

Cyanobacteria are indicated as organisms that can possibly support Mars colonization, contributing to the production of oxygen and other commodities therein. In this general context, the aim of this work was to evaluate the ability of three species of cyanobacteria (Anabaena cylindrica, Nostoc muscorum, and Arthrospira platensis) and a green microalga (Chlorella vulgaris) to grow using only the resources existing in Mars, i.e., water and Martian regolith stimulant (MGS-1), under an Earth-like atmosphere. A Martian regolith extract was produced and used as a culture medium to grow these species. Their growth was assessed during a period of 25 days, using optical density and fluorometric parameters. After this period, the possible contribution of end-of-life cyanobacteria/microalga as biofertilizing agents was also assessed, using the macrophyte Lemna minor as a vegetable model. Among the three species, N. muscorum showed the best growth performance when compared to the other species, while A. platensis and C. vulgaris were not able to thrive on Mars regolith extract. Therefore, N. muscorum should be the target of future studies not only due to their role in oxygen production but also due to their possible use as a food source, as many members of the Nostoc genus. Cyanobacteria and microalgae (A. platensis and C. vulgaris) showed good abilities as biofertilizing agents, i.e., they stimulated biomass (i.e., dry weight) production at levels comparable to the plants that grew on standard synthetic medium. The highest yield was reached with A. platensis, while the lowest was achieved using the media with N. muscorum. FTIR-ATR (Fourier transform infrared with attenuated total reflectance) spectroscopy showed that the differences between the plants grown on media with or without Martian regolith seem to be related mainly to polysaccharides.

4.
Molecules ; 26(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34834050

ABSTRACT

Bio-based ionic liquids (ILs) are being increasingly sought after, as they are more sustainable and eco-friendly. Purines are the most widely distributed, naturally occurring N-heterocycles, but their low water-solubility limits their application. In this work, four purines (theobromine, theophylline, xanthine, and uric acid) were combined with the cation tetrabutylammonium to synthesize bio-based ILs. The physico-chemical properties of the purine-based ILs were characterized, including their melting and decomposition temperatures and water-solubility. The ecotoxicity against the microalgae Raphidocelis subcapitata was also determined. The ILs show good thermal stability (>457 K) and an aqueous solubility enhancement ranging from 53- to 870-fold, in comparison to their respective purine percursors, unlocking new prospects for their application where aqueous solutions are demanded. The ecotoxicity of these ILs seems to be dominated by the cation, and it is similar to chloride-based IL, emphasizing that the use of natural anions does not necessarily translate to more benign ILs. The application of the novel ILs in the formation of aqueous biphasic systems (ABS), and as solubility enhancers, was also evaluated. The ILs were able to form ABS with sodium sulfate and tripotassium citrate salts. The development of thermoresponsive ABS, using sodium sulfate as a salting-out agent, was accomplished, with the ILs having different thermosensitivities. In addition, the purine-based ILs acted as solubility enhancers of ferulic acid in aqueous solution.


Subject(s)
Ionic Liquids/chemical synthesis , Purines/chemical synthesis , Ionic Liquids/chemistry , Ionic Liquids/toxicity , Microalgae/drug effects , Purines/chemistry , Purines/toxicity , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/toxicity , Solubility , Temperature
5.
ChemSusChem ; 14(14): 3018-3026, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34087058

ABSTRACT

An acidic aqueous biphasic system (AcABS) presenting a desired and reversible phase transition with HNO3 concentration and temperature was developed herein as an integrated platform for metal separation. The simple, economical, and fully incinerable (C,H,O,N) AcABS composed of tetrabutylammonium nitrate ([N4444 ][NO3 ])+HNO3 +H2 O was characterized and presented an excellent selectivity towards CeIV against other rare earth elements and transition metals from both synthetic solutions and nickel metal hydride (NiMH) battery leachates. The acid-driven self-assembly of AcABS bridges the gap between traditional ABS and liquid-liquid extraction whilst retaining their advantageous qualities, including compatibility with highly acidic solutions, water as the primary system component, the avoidance of organic diluents, rapid mass transfer, and the potential integration of the leaching and separation steps.

6.
Molecules ; 25(23)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260955

ABSTRACT

In this work, the aqueous phase diagram for the mixture of the hydrophilic tributyltetradecyl phosphonium ([P44414]Cl) ionic liquid with acetic acid (CH3COOH) is determined, and the temperature dependency of the biphasic region established. Molecular dynamic simulations of the [P44414]Cl + CH3COOH + H2O system indicate that the occurrence of a closed "type 0" biphasic regime is due to a "washing-out" phenomenon upon addition of water, resulting in solvophobic segregation of the [P44414]Cl. The solubility of various metal oxides in the anhydrous [P44414]Cl + CH3COOH system was determined, with the system presenting a good selectivity for CoO. Integration of the separation step was demonstrated through the addition of water, yielding a biphasic regime. Finally, the [P44414]Cl + CH3COOH system was applied to the treatment of real waste, NiMH battery black mass, being shown that it allows an efficient separation of Co(II) from Ni(II), Fe(III) and the lanthanides in a single leaching and separation step.


Subject(s)
Acids/chemistry , Ionic Liquids/chemistry , Metals/analysis , Metals/isolation & purification , Organic Chemicals/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Hydrophobic and Hydrophilic Interactions , Organophosphorus Compounds/chemistry , Waste Disposal, Fluid/methods
7.
Phys Chem Chem Phys ; 21(14): 7462-7473, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30892304

ABSTRACT

The temperature responsive solubility of ionic liquids with 'bulky' polar regions, such as tributyltetradecyl phosphonium chloride ([P44414]Cl), in acidic aqueous solutions is elucidated through a combined experimental and computational approach. The temperature effect in the acidic aqueous biphasic system HCl/[P44414]Cl/H2O was characterised in the range 273 K to 373 K and was found to significantly deviate from the corresponding aqueous biphasic system with NaCl. A new transferable coarse grained MARTINI model for [P44414]Cl was developed, validated and applied to provide a molecular understanding of the experimental results. It is shown that the presence of large aliphatic moieties around the central phosphorus atoms of [P44414]Cl results in a decrease in the electrostatic repulsion between the cationic moieties, leading the [P44414]+ cation to present a behaviour conventionally associated with non-ionic surfactants. This difference in behaviour between HCl and NaCl was shown to result from the greater interaction of the hydronium cation with the micelle surface, thereby enhancing the [P44414]Cl aggregation.

8.
Green Chem ; 20(6): 1218-1223, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-30271274

ABSTRACT

Thermoreversible aqueous biphasic systems (ABS) composed of ammonium-based zwitterions (ZIs) and polymers are here disclosed to act as integrated bioreaction-separation processes. The biocatalytic reaction involving laccase occurs in homogeneous media, after which small changes in temperature induce the formation of two phases and the complete separation of the enzyme from the products in a single-step. These systems also allow the recover and reuse of the enzyme, along with the ZI-rich phase, contributing towards the development of sustainable biocatalytic processes.

9.
Phys Chem Chem Phys ; 20(24): 16477-16484, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29877534

ABSTRACT

Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated exceptional performance in bioseparation processes. However, IL-based ABS are of limited interest for metal extraction as most metals are not stable in their neutral or alkaline pH conditions. In the quest for better extraction systems for metals, the development of IL-based ABS with highly acidic solutions (AcABS), induced by the mixture of a hydrophilic IL ([P44414]Cl), a mineral acid (HCl, HNO3 or H2SO4) and water, opens new possibilities. A comprehensive investigation of fundamental aspects of IL-based AcABS was performed, including the temperature dependence of the phase diagrams, tie-lines and ion exchange behavior, evidencing the unique characteristics of these new systems. In particular, the favorable biphasic formation with an increase in temperature showcases the lower critical solution temperature (LCST) behavior of the phosphonium-based IL and opens many possibilities for AcABS application by creating stimuli responsive systems. The anion exchange identified highlights the IL-based AcABS complexity that renders the analytical characterization of the phases mandatory, instead of the traditional method coupling an empirical fit of the binodal with the lever-arm rule. Through judicious selection of the inorganic acid, different extraction systems can be obtained by tuning the degree of anion-exchange, underlining the versatility of the proposed AcABS system.

10.
Phys Chem Chem Phys ; 20(20): 14234-14241, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29761193

ABSTRACT

Aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and conventional salts have been largely investigated and successfully used in separation processes, for which the determination of the corresponding ternary phase diagrams is a prerequisite. However, due the large number of ILs that can be prepared and their high structural versatility, it is impossible to experimentally cover and characterize all possible combinations of ILs and salts that may form ABS. The development of tools for the prediction and design of IL-based ABS is thus a crucial requirement. Based on a large compilation of experimental data, a correlation describing the formation of IL-based ABS is shown here, based on the hydrogen-bonding interaction energies of ILs (EHB) obtained by the COnductor-like Screening MOdel for Real Solvents (COSMO-RS) and the molar entropy of hydration of the salt ions. The ability of the proposed model to predict the formation of novel IL-based ABS is further ascertained.

11.
Phys Chem Chem Phys ; 20(15): 9838-9846, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29610796

ABSTRACT

Ionic-liquid-based acidic aqueous biphasic systems (IL-based AcABS) represent a promising alternative to the solvent extraction process for the recovery of critical metals, in which the substitution of the inorganic salt by an acid allows for a 'one-pot' approach to the leaching and separation of metals. However, a more fundamental understanding of AcABS formation remains wanting. In this work, the formation mechanisms of AcABS are elucidated through a comparison with traditional aqueous biphasic systems (ABS). A large screening of AcABS formation with a wide range of IL identifies the charge shielding of the cation as the primary structural driver for the applicability of an IL in AcABS. Through a systematic study of tributyltetradecylphosphonium chloride ([P44414]Cl) with various chloride salts and acids, we observed the first significant deviation to the cationic Hofmeister series reported for IL-based ABS. Furthermore, the weaker than expected salting-out ability of H3O+ compared to Na+ is attributed to the greater interaction of H3O+ with the [P44414]+ micelle surface. Finally, the remarkable thermomorphic properties of [P44414]Cl based systems are investigated with a significant increase in the biphasic region induced by the increase in the temperature from 298 K to 323 K. These finding allows for the extension of ABS to new acidic systems and highlights their versatility and tunability.

12.
Phys Chem Chem Phys ; 20(13): 8411-8422, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29542784

ABSTRACT

In the past decade, the remarkable potential of ionic-liquid-based aqueous biphasic systems (IL-based ABSs) to extract and purify a large range of valued-added biocompounds has been demonstrated. However, the translation of lab-scale experiments to an industrial scale has been precluded by a poor understanding of the molecular-level mechanisms ruling the separation or partition of target compounds between the coexisting phases. To overcome this limitation, we carried out a systematic evaluation of specific interactions, induced by ILs and several salts used as phase-forming components, and their impact on the partition of several solutes in IL-based ABSs. To this end, the physicochemical characterization of ABSs composed of imidazolium-based ILs, three salts (Na2SO4, K2CO3 and K3C6H5O7) and water was performed. The ability of the coexisting phases to participate in different solute-solvent interactions (where "solvent" corresponds to each ABS phase) was estimated based on the Gibbs free energy of transfer of a methylene group between the phases in equilibrium, ΔG(CH2), and on the Kamlet-Taft parameters - dipolarity/polarizability (π*), hydrogen-bonding donor acidity (α) and hydrogen-bonding acceptor basicity (ß) - of the coexisting phases. Relationships between the partition coefficients, the phase properties expressed as Kamlet-Taft parameters and COSMO-RS descriptors were established, highlighting the ability of ILs to establish specific interactions with given solutes. The assembled results clearly support the idea that the partition of solutes in IL-based ABSs is due to multiple effects resulting from both global solute-solvent and specific solute-IL interactions. Solute-IL specific interactions are often dominant in IL-based ABSs, explaining the higher partition coefficients, extraction efficiencies and selectivities observed with these systems when compared to more traditional ones majorly composed of polymers.

13.
J Chromatogr A ; 1559: 69-77, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-28793962

ABSTRACT

Human activities are responsible for the release of innumerous substances into the aquatic environment. Some of these substances can be used as pollution tracers to identify contamination sources and to prioritize monitoring and remediation actions. Thus, their identification and quantification are of high priority. However, due to their presence in complex matrices and at significantly low concentrations, a pre-treatment/concentration step is always required. As an alternative to the currently used pre-treatment methods, mainly based on solid-phase extractions, aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and K3C6H5O7 are here proposed for the simultaneous extraction and concentration of mixtures of two important pollution tracers, caffeine (CAF) and carbamazepine (CBZ). An initial screening of the IL chemical structure was carried out, with extraction efficiencies of both tracers to the IL-rich phase ranging between 95 and 100%, obtained in a single-step. These systems were then optimized in order to simultaneously concentrate CAF and CBZ from water samples followed by HPLC-UV analysis, for which no interferences of the ABS phase-forming components and other interferents present in a wastewater effluent sample have been found. Based on the saturation solubility data of both pollution tracers in the IL-rich phase, the maximum estimated concentration factors of CAF and CBZ are 28595- and 8259-fold. IL-based ABS can be thus envisioned as effective pre-treatment techniques of environmentally-related aqueous samples for a more accurate monitoring of mixtures of pollution tracers.


Subject(s)
Ionic Liquids/chemistry , Water Pollutants, Chemical/isolation & purification , Caffeine/analysis , Caffeine/isolation & purification , Carbamazepine/chemistry , Carbamazepine/isolation & purification , Chromatography, High Pressure Liquid , Humans , Solid Phase Extraction , Spectrophotometry, Ultraviolet , Water Pollutants, Chemical/analysis
14.
Angew Chem Int Ed Engl ; 56(47): 15058-15062, 2017 11 20.
Article in English | MEDLINE | ID: mdl-28967998

ABSTRACT

Novel aqueous multiphase systems (MuPSs) formed by quaternary mixtures composed of cholinium-based ionic liquids (ILs), polymers, inorganic salts, and water are reported herein. The influence of several ILs, polymers, and salts was studied, demonstrating that a triple salting-out is a required phenomenon to prepare MuPSs. The respective phase diagrams and "tie-surfaces" were determined, followed by the evaluation of the effect of temperature. Finally, the remarkable ability of IL-based MuPSs to selectively separate mixtures of textile dyes is shown.

15.
Phys Chem Chem Phys ; 19(18): 11011-11016, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28405644

ABSTRACT

Although highly relevant to a priori select adequate solvents for a given application, the determination of the hydrogen-bond acidity or proton donor ability of aqueous solutions of ionic liquids is a difficult task due to the poor solubility of the commonly used probes in aqueous media. In this work, we demonstrate the applicability of the pyridine-N-oxide probe to determine the hydrogen-bond acidity of both neat ionic liquids and their aqueous solutions, based on 13C NMR chemical shifts, and the suitability of these values to appraise the ability of ionic liquids to form aqueous two-phase systems.

16.
Green Chem ; 19(17): 4012-4016, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-30271270

ABSTRACT

The ability of water-soluble ammonium-based zwitterions (ZIs) to form aqueous biphasic systems (ABS) in presence of salts aqueous solutions is here disclosed for the first time. These systems are thermoreversible at temperatures close to room temperature and further allow the design of their thermal behavior, from an upper critical solution temperature (UCST) to a lower critical solution temperature (LCST), by increasing the ZIs alkyl chains length. The investigated thermoreversible ABS are more versatile than typical liquid-liquid systems, and can be applied in a wide range of temperatures and compositions envisaging a target separation process.

17.
Green Chem ; 18(17): 4582-4604, 2016 Sep 07.
Article in English | MEDLINE | ID: mdl-27667965

ABSTRACT

Due to their unique properties, in recent years, ionic liquids (ILs) have been largely investigated in the field of analytical chemistry. Particularly during the last sixteen years, they have been successfully applied in the chromatographic and electrophoretic analysis of value-added compounds extracted from biomass. Considering the growing interest in the use of ILs in this field, this critical review provides a comprehensive overview on the improvements achieved using ILs as constituents of mobile or stationary phases in analytical techniques, namely in capillary electrophoresis and its different modes, in high performance liquid chromatography, and in gas chromatography, for the separation and analysis of natural compounds. The impact of the IL chemical structure and the influence of secondary parameters, such as the IL concentration, temperature, pH, voltage and analysis time (when applied), are also critically addressed regarding the achieved separation improvements. Major conclusions on the role of ILs in the separation mechanisms and the performance of these techniques in terms of efficiency, resolution and selectivity are provided. Based on a critical analysis of all published results, some target-oriented ILs are suggested. Finally, current drawbacks and future challenges in the field are highlighted. In particular, the design and use of more benign and effective ILs as well as the development of integrated (and thus more sustainable) extraction-separation processes using IL aqueous solutions are suggested within a green chemistry perspective.

18.
Phys Chem Chem Phys ; 18(28): 18958-70, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27353302

ABSTRACT

Among different classes of ionic liquids (ILs), those with cyano-based anions have been of special interest due to their low viscosity and enhanced solvation ability for a large variety of compounds. Experimental results from this work reveal that the solubility of glucose in some of these ionic liquids may be higher than in water - a well-known solvent with enhanced capacity to dissolve mono- and disaccharides. This raises questions on the ability of cyano groups to establish strong hydrogen bonds with carbohydrates and on the optimal number of cyano groups at the IL anion that maximizes the solubility of glucose. In addition to experimental solubility data, these questions are addressed in this study using a combination of density functional theory (DFT) and molecular dynamics (MD) simulations. Through the calculation of the number of hydrogen bonds, coordination numbers, energies of interaction and radial and spatial distribution functions, it was possible to explain the experimental results and to show that the ability to favorably interact with glucose is driven by the polarity of each IL anion, with the optimal anion being dicyanamide.

19.
Sci Rep ; 6: 20276, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26843320

ABSTRACT

The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process.

20.
Biochem Eng J ; 101: 142-149, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26435687

ABSTRACT

Aiming at the development of self-buffering and benign extraction/separation processes, this work reports a novel class of aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and organic biological buffers (Good's buffers, GBs). A large array of ILs and GBs was investigated, revealing than only the more hydrophobic and fluorinated ILs are able to form ABS. For these systems, the phase diagrams, tie-lines, tie-line lengths, and critical points were determined at 25 °C. The ABS were then evaluated as alternative liquid-liquid extraction strategies for two amino acids (L-phenylalanine and L-tryptophan). The single-step extraction efficiencies for the GB-rich phase range between 22.4 and 100.0 % (complete extraction). Contrarily to the most conventional IL-salt ABS, in most of the systems investigated, the amino acids preferentially migrate for the most biocompatible and hydrophilic GB-rich phase. Remarkably, in two of the studied ABS, L-phenylalanine completely partitions to the GB-rich phase while L-tryptophan shows a preferential affinity for the opposite phase. These results show that the extraction efficiencies of similar amino acids can be tailored by the design of the chemical structures of the phase-forming components, creating thus new possibilities for the use of IL-based ABS in biotechnological separations.

SELECTION OF CITATIONS
SEARCH DETAIL
...